

NEXTGENPOL 160M160S2V0 Dual LOOP/OUTPUT

Evaluation Board Guide

NEXTGENPOL 160M160S2V0 DUAL LOOP/OUTPUT

Dual Loop/Output Voltage Evaluation Board populated with MLX040 /MLX080 / MLX120 /MLX160 /MLX160+SLX040 or MLX160+SLX160

Table of Contents

1.	Desci	ription	
2.	Schei	matic	6
	2.1.	Eval Boa	rd Sections11
		2.1.1.	Input Connections
		2.1.2.	Output Connections
		2.1.3.	Load Transient Connection15
		2.1.4.	PMBus Connection16
		2.1.5.	Bode Plot Connection
		2.1.6.	Connections Summary
	2.2	ProGUI I	II Connection and Setup

1. Description

The MLX series are the next generation of POL modules that can deliver 40-160A; 40-160A in a two loop configured mode.. It operates over a wide input range from 7V to 14Vdc and provides precisely regulated output voltage from 0.45 to 2..0V

The module's features include digital PMBus[™] interface, remote ON/OFF, output voltage sequencing, pre-biased start up, cycle-by-cycle output overcurrent protection, input and output under-voltage and over-voltage protections and over-temperature protections and more. The module has an extensive set of PMBus[™] commands for both control and monitoring of the system parameters.

The evaluation board is shown on the picture below. It comes pre-populated with required minimum of input and output capacitors. Numerous empty component place holders allow the board to be reconfigured to match a specific customer's application. Various test points facilitate the easy setup and monitoring of the module operation.

Top View of Evaluation Board with MLX160 +SLX160 moule

1. Description (Continued)

The evaluation board can come pre-installed with any of the Satellite Modules

Evaluation Board with different module variants

1. Description (Continued)

The Installed components are as follows. The schematic on the following page shows maximum capability and includes expansion capability:

- Ceramic caps for input
- Ceramic and Surface electrolytic on output

Bottom View of Evaluation Board

2. Schematic — Download Schematic at www.omnionpower.com

2. Schematic (Continued) Download Schematic @www.omnionpower.com

		BDA3	
V <u>5V0UT</u> 8 V <u>3, 3V 64</u>	V5V V3.3V	VOUT1_SEN_N VOUT1_SEN_P	1 <u>36 VOUT1_SEN_N</u> 1 <u>37 VOUT1_</u> SEN_P
VRRDY163 VRRDY29	VRRDY1 VRRDY2	VOUT2_SAT_L2_SEN_N VOUT2_SAT_L2_SEN_P	34 33
UR EN 149 UR EN 214 URHOT 50	VR_EN1 VR_EN2 VRHOT	SMALERT SM_CLX SM_DAT	
PROG 6 CFILT 59 WARN <u>#ZGP 5</u>	PROG CFILT WARN#GP	TSEN1 TSEN_SAT_L2	47 TSEN1 46
		INONG SAT L1/IMONG SAT L2 IMONG SAT L1/IMONG SAT L2 IMONT SAT L1/IMON2 SAT L2 IMON8 SAT L1/IMON1 SAT L2	12 MOND 7 MON7 11 MON8
PWM5 66 PWM6 66 PWM9 66 PWM9 66	PWM5_SA PWM6_SA PWM7_SA PWM8_SA	T LIPWIN SAT L2 PGND T LIPWIN SAT L2 PGND T LIPWIN SAT L2 PGND T LIPWIN SAT L2 PGND PGND PGND	15 16 3 4 1 2

	BDA4		
V <u>5V0UT 8</u> V <u>3. 3V 64</u>	V5V VOUT1_SEN_N V3.3V VOUT1_SEN_P	<u>#OUT1_SEN_N</u>	5VOU 3. 3V
VRRDY1 83 VRRDY2 9	VRRDY1 VOUT2_SAT_L2_SEN_N VRRDY2 VOUT2_SAT_L2_SEN_P	24 U	RRDY RRDY
URENI49 UREN214 URHOT 90	VR_EN1 SMALERT VR_EN2 SM_CLK VRHOT SM_DAT	<u>© SM_ALERT</u> © SM_CLK © SM_LDAT	R-EN RFOT
PROG 6 CFTLT 59 WARN#7GP 5	PROG TSENI CFILT TSEN_SAT_L2 WARN#GP	a TSEN1	PROC
	INONE SAT L'INIONA SAT L2 INONE SAT L1INIONE SAT L2 INONE SAT L1INIONE SAT L2 INONE SAT L1INIONE SAT L2	13 IMON5 12 IMON6 7 IMON7 11 IMON8	11.1117
PMM5 6 PAM6 61 PAM7 80 PAM8 6	PINIS SAT LIPWINA SAT L2 POND Pinis Sat`lipwing Sat`l2 Pond Pinis Sat`lipwing Sat`l2 Pond Pinis Sat`lipwing Sat`l2 Pond Pinis Sat`lipwing Sat`l2 Pond	15 16 3 4	
		Ť	

RIND

MASTER MODULE BDA2 EFF TESTVOUT2 BDA2 PIN33 PIN44 VOUT VOUT VOUT VOUT VOUT 2 + ª 0 0 <u></u> 693 JOUT2 50 50 5 Ē 48 ť VIN 1N6 VOUT PIN55 PIN66 VOUT PGND **DND** GND VOUT2 C13 Ю Ċ F 80 C16 ຮີ 8 PGND c213 C212 ÷≣ CFILT AND IMON DIFF ROUTING PGND BDA2 L1/TSEN4_SAT_L2 L1/TSEN3_SAT_L2 TSEN5 SAT VSVOU' V5V_6 V5V_7 V5V_8 L2 L2 L2 TSE SAT SEN_SAT 36 90 F 3 52 Ī C197 e C196 C18 PGND PGND PGND PGND PGND PGND PGND E b h CFILT6 CFILT7 RGND WM5 C PWM6 DOND PGND 5 6 122 C C19. 84 111 8 MO ION8 SAT L1/IMON1 C216 C228 C236 C220 C268 C244 C252 C260 C288 C296 47.05 47UF 47.05 47.05 4705 4705 47.05 4705 4705 4705 C214 0.218 222 224 232 C240 0.248 C256 2264 C272 2392 ÷₿ 401 10 40.05 401 406 R. 10 ^B 10 C229 C245 C253 C269 C237 C289 C297 Ř 4NF 42 47JF 261 4705 436 42 = 2 C249 C265 C273 225 C257 C293 233 C241 47.05 4705 4705 4705 10 47.05 47UF 47.05 C230 C238 C246 C298 C254 C270 C217 C221 C262 C290 47JF N ŝ 4705 47.0 Ř 47UF 4705 ŝ C242 C215 219 C250 C258 C266 C294 C223 C226 C234 C274 = 8 416 47.05 416 4705 470 4705 47.05 470 ÷₿ υoι лта C255 C239 C247 C263 C299 C231 C271 401 291 ₽N¢ B 40.0 40.05 ₽D C235 C243 C259 C267 C287 § + 33 C227 R 42 B 8 B R R Ē _<u>Z°</u>Z° 2^s 2^s 2 2 2° 1 *<mark>5</mark>3 P2ª <mark>7</mark>8 23 2⁸ **2**å 2 23 25 22 2º P2 5 1 Page 8

2. Schematic (Continued) Download Schematic @www.omnionpower.com

© Copyright 2023 OmniOn power Inc. All rights reserved.

2. Schematic (Continued) Download Schematic @www.omnionpower.com

822UF PER PHASE .3291UF ON 4PHASE

Page 9

2

2

2. Schematic (Continued) Download Schematic @www.omnionpower.com

PGND

PIN9 VOUT1 PIN99 VOLT2 PIN12 PIN111 PIN122 PIN11 oSTD12 oSTD24 oSTD13 oSTD25 R11 VOUT1_SEN_ R14 VOUT2_SAT 2_SEN \sim ~~ R16 8 R17 HDR10 6 \sim HDR20 Ы \sim HDR10 HDR20 HDR10 3 HDR20 R15 R18 $\sim \sim \sim$ STD8 STD20 \sim 0 ostda Vou R10 VOUT1_SEN_N R12 T2_SAT_L2_SEN_N PIN13 PIN14 ŝ **PIN133** Ц PIŇ144 5 22 0 **PIN10** 0 0 O PIN100 0

PGND

The complete schematic diagram of the MLX Series evaluation board is shown in the previous pages. Components on schematic show max capability and may not be actually used on the board. The complete schematic can be down-loaded from <u>www.omnionpower.com</u>

2.1. Eval Board Sections

The following pictures show the input connections and components external to the module

2.1.1. Input Connections

DC Input: 7V to 14V

Switch in ON Position. Loop2 is Enabled

Switch in OFF Position. Loop1 is Disabled

2.1.2. Output Connections

Schematic shows max capability. Board will not be populated with all components

10,00

VOUT2	_
81 3 1	
8 1 * 01 *01 *3	1
	3 [
	8

C128

C129

C130

5212

c126

2.1.2. Output Connections (Continued)

There are two set of traces for Vout sensing. Zero ohm resistors are provided to select the sensing location.

Sense at the output of the POL module (R15,R16,R17,R18) are zero ohm resistors

Sense at the slammer connector (R10,R11,R12,R14) either zero ohm or 50 ohm,

The single output and the dual output evaluation boards come with the Zero ohm resistors to regulate at the POL. To regulate at the slammer connector remove zero ohm resistors near module and populate at the slammer connector R10,R11,R12,R14.

2.1.3. Load Transient Connections PING

2.1.4. PMBus Connection

Evaluation Board is provided with a pair of 10 pin connectors and 3 pin header for PMBus connectivity

2.1.5. Bode Plot Connection

Evaluation Board is provided with test points for Bode Plot connections. Populate a 10-50 ohm resistor between test points A&B, and inject a small signal across Point A and Point B by using a transformer. Measure voltage of Ch1(A and GND) and Ch2(B and GND); Gain=Ch1/Ch2

Bode Measurement

2.1.6. Connections Summary

Bias Rails

Page 18 © Copyright 2023 OmniOn power Inc. All rights reserved.

Output Rails

VOUT 1	J7 VOUT (N) SEN N TP2 PINT
VOUT 2	PINI44 PINI44 PINI44 PINI44 PINI44 PINI44

2.2 ProGUI III Connection and Setup

Click on ProGUI_III option after clicking on your Windows Start Icon. Make sure the dongle is connected to the board and the computer. Ensure ribbon cable is connected with the pin alignment shown below.

Click on Connect and then Scan Module to find the MLX module and then click on Start Polling

Workbench Module Plot CLI Log Setup Debug Offline Help

Dongle Connect	Select Module Type	Module Connect	Polling Control
No Comport V Connect	Auto Scan \checkmark	Scan Module	Start Polling 20 ms

• Click on "Module" in the top left corner and then click on Module Configuration

	Module	Plot	CLI	Log	Setup	Debu
r	Mod	dule Co	nfigur	ation	Ctrl+	M e
D	evice 🗸	Conne	ect		Auto Scan	

• A new window will open up. Click on the Confirm button to allow access to the module.

Select Module										
Name MLX160 V	Address 64	∨ Page All	\sim	Confirm						

 Clicking on the Load Configuration in the Store and Restore section on the Right Upper corner which enables the user to select pre-loaded config files for the type of MLX+SLX board being used.

place Made	Nedule Copport	Dal	ina Cantral				
🕑 Ma	dule Configuration						
Selec	t Module		Read and Wri	te	te	te Store and Restore	te Store and Restore
Name	MLX160 V Address 64 V Pa	age All \checkmark Confirm	Read all	Write all	Write all ClearFault	Write all ClearFault Load config	Write all ClearFault Load config Sav
Monit	or		Statu	s	s	s	s
			•				· · · · · · · · · · · · · · · · · · ·
		III - MIX CIX Combinetion (
« 05	(C:) > DPI Suite > DPI Suite > PROGUI_	III > MLX_SLX_Combination_(ontigs				
v folde	er						
es ^	Name	Date modified	Туре				
	MLX040_SLX040_DualVout	7/24/2024 9:17 AM	File folder				
B	MLX040_SLX160_DualVout	7/24/2024 9:17 AM	File folder				
ngi	MLX080_SLX040_DualVout	7/24/2024 9:17 AM	File folder				
NRC	MLX080_SLX160_DualVout	7/24/2024 9:17 AM	File folder				
	MLX120_SLX040_DualVout	7/24/2024 9:17 AM	File folder				
	MLX120_SLX160_DualVout	7/24/2024 9:17 AM	File folder				
	MLX160_SLX040_DualVout	7/24/2024 9:17 AM	File folder				
	MLX160_SLX040_SingleVout	7/24/2024 9:17 AM	File folder				
5	MLX160_SLX040x2_SingleVout	7/24/2024 9:17 AM	File folder				
	MLX160_SLX040x3_SingleVout	7/24/2024 9:17 AM	File folder				
	MLX160_SLX160_DualVout	7/24/2024 9:17 AM	File folder				
	MLX160_SLX160_SingleVout	7/24/2024 9:17 AM	File folder				

• Select the file from the folder representing the configuration on the board. Be aware that some configurations may have 2 files. Load page 0 followed by Page 1

DPI	Suite > PROGUI_III > MLX_SLX_Combina	ation_Configs > MLX160_SLX	040_DualVout	✓ ט Search
folder				
^	Name	Date modified	Туре	Size
	160M_40S_DualVout_OP_R15_Page0	6/5/2024 11:01 AM	File	4 KB
	160M_40S_DualVout_OP_R15_Page1	6/5/2024 10:55 AM	File	4 KB
	© Info	Please waiting! load configuration	n will take ten second	× 1. 4 50

- Clicking on the Hex Command or the Value field for the configurable registers populates the Notes filed on the Right Upper corner which provides the user with information on the available options for that command/register. For example clicking on the current value of 0x80 shows the available valid values for OPERATION command. Remember to click on the Write button after entering the value in the Value register. Click on save config only once all changes have been made since there are limited number of writes available. Another way to conserve number of writes in mentioned later in this document.
- Use PAGE Command to switch between Loop1(Voltage1) and Loop2(Voltage2)

Select Module Name MLX160 V Address 64	Read a	Read and Write Read all Write all ClearFault		Store and Restore Load config Save config Check N					/TP Program				
Monitor												1 🗖	Note
	Cmd	Value	Read	Write	^			Cmd	Value	Read	Write ^		'0X00': 'Normal power-off'
PAGE	0x00	0x00	Read	Write		READ_VIN (V)		0x88	12.125	Read			'0X80': 'On Vout_comman' '0X40': 'Soft OEE(With Sequencing)'
OPERATION	0x01	0x80	Read	Wite	_	READ_IIN (A)		000	0.0	Read	_	↦	'0X94': 'Margin Low IF'
VOUT_COMMAND (V)	0x21	1.0	Read	Write		READ_VOUT (V)		0x8B	0.004	Read			'0X98': 'Margin Low AOF'
VOUT_MODE	0x20	-8	Read	Write		READ_IOUT (A)		0x8C	2.0	Read			'0XA8': 'Margin High AOF'
VOUT_TRIM (V)	0x22	0.0	Read	Write	~	READ_POUT (W)		0x96	0.0	Read			

• Similarly clicking on ON_OFF_CONFIG Value 0x1C data field below brings up all the options available to the user in the Note Section. For example, enter 0x02 if you want module to powerup as soon as input is applied

Monitor							Status					Note
	Cmd	Value	Read	Writ	te	^		Cmd	Value	Read	Write ^	'0X02': 'Start when Power
PAGE	0x00	0x00	Read	Writ	e		READ_IIN (A)	0x89	0.0	Read		present' '0X14'' 'Bespond to EN pin
OPERATION	0x01	0x80	Read	Writ	e		READ_VOUT (V)	0x8B	0.004	Read		only soft stop
VOUT_COMMAND (V)	0x21	1.0	Read	Writ	e		READ_IOUT (A)	0x8C	2.0	Read		active low' '0X15': 'Bespand to EN pin
VOUT_MODE	0x20	-8	Read	Writ	e		READ_POUT (W)	0x96	0.0	Read		only hard stop
VOUT_TRIM (V)	0x22	0.0	Read	Writ	e	J	READ_PIN (W)	0x97	0.0	Read		active low' '0X16': 'Bespond to EN pin
			[-	READ_TEMPERATURE_1 (C)	Ux8D	23	Read		only soft stop
Manufacturer							READ_DUTY_CYCLE (%)	0x94	0.0	Read		active high'
	Cr	nd ۱	/alue	Read	Write	^	MFR_READ_VAUX	0xC4	5.016	Read		only hard stop
COMMON_ISNS_USER_GAIN_PHASE_7	0x0	04A 0		Read			MFR_VIN_PEAK	0xC5	12.125	Read		active high' '0×18': 'Bespond to Opear
COMMON_ISNS_USER_GAIN_PHASE_8	0x0	04A 0		Read			MFR_VOUT_PEAK	0xC6	1.0	Read		tion on/off only'
IOUT_CAL_OFFSET	0x3	9 -(0.25	Read			MFK_IOUT_PEAK	0xC7	30.0	Read		'0X1C': 'Respond to Opear tion on/off and EN
IOUT_CAL_GAIN (%)	0x3	8 0	.0	Read			MFR_TEMP_PEAK	0xC8	24	Read		pin soft stop active
COMMON_DISABLE_OUTPUT	0x0	040 2		Read		~		0.00	00	n	>	Script
On/Off Configure			/				User Defined					
Cmd Value	Read	1 W	rite			^		Cmd	Value	Read	Write ^	
ON_OFF_CONFIG 0x02 0x1C	Read	w	rite				COMMON_I2C_DEVICE_ADDR	0x0020	16	Read	Write	

Main Display Screen once Module is On (with output)

Drag desired parameters to screen for polling and drop into graph area

Remember to click Start

Once module is Turned On the main screen displays the key input-output measurements

On/Off Configure								
		Cmd	Value	Read	Write			
	ON_OFF_CONFIG	0x02	0x02	Read	Write			

Polling Panel						
	MLX160 SLX160 @64					
LOOP1_STATUS_WORD	0x0000					
LOOP1_VIN (V)	12.0					
LOOP1_IIN (A)	0.03					
LOOP1_VOUT (V)	1.0					
LOOP1_IOUT (A)	1.0					
LOOP1_TEMP (C)	28					
LOOP2_STATUS_WORD	0x0000					
LOOP2_VIN (V)	12.0					
LOOP2_IIN (A)	0.16					
LOOP2_VOUT (V)	1.199					
LOOP2_IOUT (A)	1.5					
LOOP2_TEMP (C)	29					
CLEAR FAULTS	Clear					
ON/OFF	ON/OFF					

Revision History

Revision	Date	Description of the change
1.1	2/6/2024	Initial Release
1.2	08/07/2024	Guidelines for use with ProGUI III added

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn Power. This document does not convey license to any patent or any intellectual property right. Copyright© 2023 OmniOn Power Inc. All rights reserved.