

EV101H3NV1K DC Fast Charger For Electric Vehicle Applications

Input: $260 - 530V_{AC}$; Output: $150 - 1000V_{DC}$ ($30kW@300 - 1000V_{DC}$)

The OmniOn Power™ EV101H3NV1K is a direct current fast-charger rectifier specifically designed to meet the unique needs in electric vehicle (EV) charger applications. The rectifier has a wide output voltage range extending from 150V_{DC} to 1000Vdc and can keep constant power of 30kW from 300V_{DC} to 1000V_{DC} with maximum output current of 100ADC. This broad charging range combined with the rectifier's high operating efficiency – greater than 96% – make it an ideal solution for current and future EV charging infrastructure. In addition, the rectifier's modular, self-contained, air-cooled chassis helps enable rapid serviceability and parallelable installations. The EV101H3NV1K features economical IGBT based power conversion.

Application

Electric Vehicle

Features

- Size: 300*84*435 millimeters or 11.81*3.31*17.13 inches (W*H*D, width not including mounting ears)
- Three-phase input nominal voltage: 400V_{AC}/480V_{AC}
- Output voltage of 150 to 1,000 Volts DC (settable)
- Operating temperature range of -40 to +75°C
- Maximum output power of 30 kilowatts (kW) at 55°C
- Peak efficiency >96%
- Emergency Power Off with discrete pin
- Low power consumption on standby
- Capable of 15V handshake output prior to power ramp
- Power density: 44.8 W/inch³

- Output High voltage mode (HV $150V_{DC} 1000V_{DC}$), Low voltage mode (LV $150V_{DC} 500V_{DC}$) operation (Fig.4)
- CANOpen communications
- Output over current protection and over voltage protection
- Input Under/over voltage protection
- Over-temperature protection
- Remote firmware upgradable
- Design life is 10 years (with maintenance)
- cTUVus approval, CE mark available

EV101H3NV1K Technical Specifications

Environmental Specifications

Parameter	Min	Тур	Max	Units	Notes
Ambient temperature					
Operating*	-40		+75	°C	Derating from 55°C. Fig.1
Storage	-40		+85	°C	
Operating Altitude			4000	m	Derating from 2000m
Installation type					In IP54 cabinet
Cooling					Forced air cooling with FAN's
Expected life of fan					
		70,000		hours	Ambient temperature 45°C
		40,000		hours	Ambient temperature 60°C
Pollution degree					PD2
Humidity					
Operating			95%		Relative humidity, non-condensing
Storage			95%		Relative humidity, non-condensing
Coating					Conformal coating
MTBF		700,000		hours	Ambient temperature 40°C
Acoustic Noise					
		68.5		dB	Input 400V _{AC} ; Output LV 350V/Full load/Ambient temperature 35°C
		67.9		dB	Input 400V _{AC} ; Output HV 750V/Full load/Ambient temperature 35°C
Vibration - sine sweep (non-operation)					IEC 60068-2-6
Vibration - random (non-operation)					IEC60068-2-64
Shock - half-sine (non-operation)					IEC60068-2-27
Salt Mist					IEC60068-2-52

^{*}below -20°C, output current will be automatically limited at startup and it will automatically increase to the target current after module internal temperature has warmed up.

Electrical items

AC specifications

Parameter	Specification	Notes
Grid Type	TN, TT	
AC rated input voltage	Three – phase Line – to – Line 400 V _{AC} / 480V _{AC}	(AC input 3Wire + PE)
AC input voltage range	260Vac \sim 530Vac derating from 323V $_{AC}$	Fig.2
AC input frequency	45-65Hz	
Maximum input current	60 A	
Power factor	>0.99@ full load	rated input
Total harmonic current	< 5% @50% – 100% input current	rated input
Voltage unbalance	10% unbalance (and still working nominal)	Single phase dip and up 10% Two phases dip and up 10%
Input impulse current	<110% rated current peak value	rated input
Input inrush current	<150% rated current peak value	rated input

OmniOn Power is a trademark of OmniOn Power Inc. All other trademarks belong to their respective owners.

Electrical items (continued)

DC specifications

Parameter	Specification	Notes
	150 – 1000V _{DC}	Fig.3
Output voltage range	15 – 150V _{DC} #	Only for low voltage mode Electrical performance is not guaranteed under current mode
Rated power	30kW	
Maximum output current	100 A	Fig.3
Peak Efficiency	≥96%	
voltage setting deviation	0.5% (typical)	
current setting deviation	≤1% @lo≥30A; ≤0.3A @lo<30A	
Output voltage ripple		Peak – to – Peak, 20MHz bandwidth
@Input 400V _{AC} ; Output LV 350V/Full load/resistor load	1.0V (typical)	Fig.5
@Input 400V _{AC} ; Output HV 750V/Full load/resistor load	1.4V (typical)	Fig.6
Output current ripple		Peak-to-peak, 150kHz bandwidth
@Input 400V _{AC} ; Output LV 350V/Full load/ with 5600uF cap	2.2A (typical)	Fig.7
@Input 400V _{AC} ; Output HV 750V/Full load/with 5600uF cap	1.4A (typical)	Fig.8
Current regular speed	25A/s (typical)	from current value to target value speed In CC mode
Voltage drop time after receiving stop command from CAN	≤ 900ms to less than 60V	from current value to 60V
Voltage slew rate in normal operation	1000V/s (typical)	
Voltage overshoot after load dump	<110% of the target voltage or less than the target voltage of EV+50V.	IEC61851-23 ed2 clause 101.2.1.7
Passive discharge	< 60V within 240seconds	

^{*15}V start feature: This feature allows for charge session startup/handshake in wireless charging applications.

Standby Function

The EPO/standby pin works for both EPO function and to provide Vcc when the module is in standby mode. The feature will keep the standby circuits alive when in standby mode and reduce the amount of power consumed during standby mode. It requires an external 10V-25V 50mA source connected to the EPO/standby pin when the module is in standby mode. When the pin has 10V-25V, and has 50mA capability, when the standby feature is ready, the internal control and start circuits will remain active but drawing reduced energy to keep them alive. A CAN command is used to wake up the rectifier or place it in standby mode. When 10-25V Vcc is applied to the standby_Vcc pin, power consumption current will be less than 50mA. The enter standby command (See CAN Protocol) through CAN, will place the module into standby Mode; a separate command (See CAN Protocol), will quit standby mode and cause the rectifier to wake up.

	Typical (W)	Max(W)	note
Ctandby novyor	2.7	3	@400Vac
Standby power	4.5	5	@480Vac

Input protection

All the faults shall be transmitted to the external control unit via CAN.

Parameter	Typical	Notes
Under-voltage protection	255±5Vac	PFC stage recover automatically, output restart need system send restart command
Over-voltage protection	535±5Vac	PFC stage recover automatically, output restart need system send restart command
Voltage unbalance protection	≥11%	PFC stage recover automatically, output restart need system send restart command

Output protection

Item	Typical	Notes
Over voltage protection	1050 ± 10V	Output restart need system send restart command
Short protection	1.5*lo_max	Output restart need system send restart command

Characteristic Curves

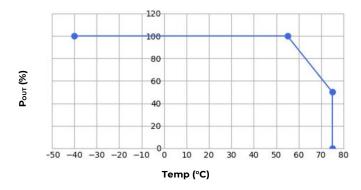


Fig.1 Temperature Limited Power Curve (Note1)

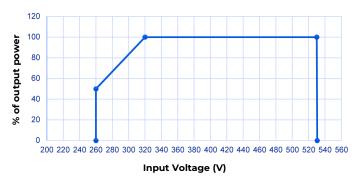


Fig.2 Input Limited Power Curve

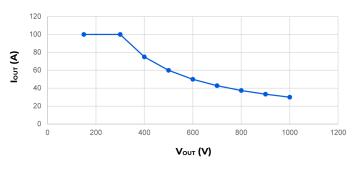
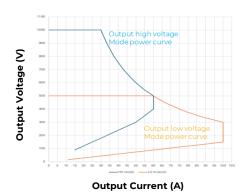
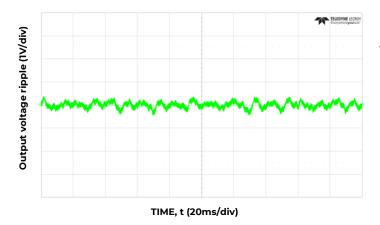
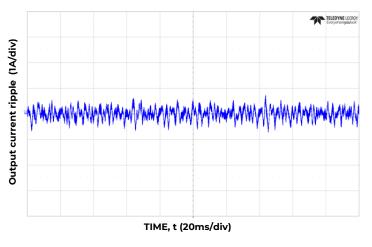


Fig.3 Output V-I Curve




Fig.4 Output Power Curve for High Voltage Mode and Low Voltage Mode

Note 1: Power derating also occur if under some critical condition, power module's PFC stage reaches 98° C (at slope of 2.5 kW/°C) or DC/DC stage reaches 106° C(at slope of 1.25 kW/°C).


Characteristic Curves (Continued)

TIME, t (20ms/div)

Fig.5 Output voltage ripple @Input 400V_{AC}; Output LV 350V/Full load/resistor load

Fig.6 Output voltage ripple @Input 400V_{AC}; Output HV 750V/Full load/resistor load

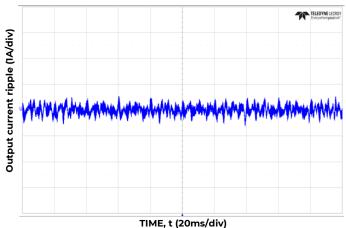
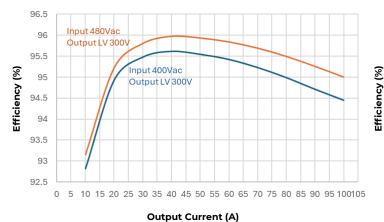



Fig.7 Output current ripple @Input $400V_{AC}$; Output LV 350V/Full load/with $5600\mu F$ capacitor

Fig.8 Output current ripple @Input 400V_{AC}; Output HV 750V/Full load/with 5600µF capacitor

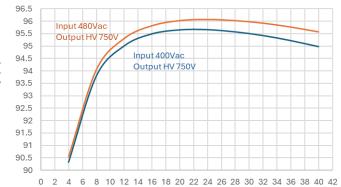


Fig.9 Rectifier Efficiency @ Output LV 300V

Output Current (A)
Fig.10 Rectifier Efficiency @ Output HV 750V

^{*}HV - Operation above 500V

LV - Operation below 500V

Characteristic Curves (Continued)

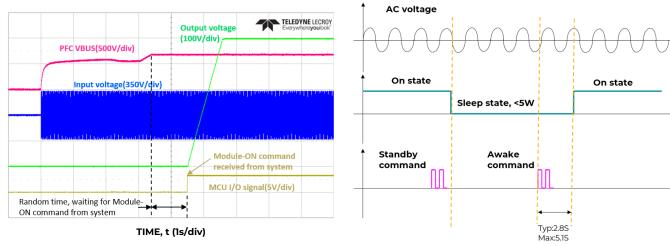


Fig.11 Power module start up @ Input 400V_{AC}; Output HV 500V/no load

Fig.12 EV101 Standby Characteristic Curve

LED indicator

The warning signals of LED indicator are as below:

Lamp	Status	Condition
	On	Normal operation
Green indicator	Flashes twice in one second	Communication with monitor; DCDC OFF command is sent by monitor
Yellow indicator	On	Input AC under – voltage derating or temperature derating; Output current imbalance but still working; Module address conflict
Tellow Indicator	Off	Working normally
	Flashes twice in one second	Working in debug mode
Red indicator	On	Fan driver failure; AC input over – voltage/under – voltage; Internal over – temperature; Communication failure between PFC and DCDC; DC output over – voltage/under-voltage; CAN communication failure; AC input voltage phase loss; Over – current in DCDC primary side; Communication failure between CAN and DCDC; Output dummy load failure; Output over – current; Output relay failure; Output current imbalance
	Off	Without any failure
	Flashes twice in one second	Fan is blocked

Insulation and Safety

Parameter	Specification	ltem	Standard	
	Basic Isolation	AC- Enclosure	Test voltage according to IEC62477	
Dielectric withstand	Reinforced	DC- Enclosure	Test voltage according to IEC62477	
voltage	Reinforced	AC – DC	Test voltage according to IEC62477	
	Reinforced	AC – CAN	Test voltage according to IEC62477	
	Reinforced	DC – CAN	Test voltage according to IEC62477	
Leakage current	<1.25mA			
Leakage Current	(<1kHz)			
Over voltage Category			Ovc III – ac port	According IEC62477 – 1
Over voltage category			Ovc II – dc port	According IEC02477

Safety Certification

Region	Safety standard
North America	UL2202, UL2231
Europe	IEC60664-1: 2007 IEC/EN 61851-23 IEC61851-1

Electro-Magnetic Compatibility

Parameter	Function	Standards	Levels	Criterion	Notes
	Conducted Emission (Note2)	IEC61851-21-2 EN55032 FCC part 15 class A	CLASS A	/	AC port
EMI	Radiated Emission (Note2)	IEC61851-21-2 EN55032 FCC part 15 class A	CLASS A	/	
EIVII	Harmonic Current Emission	IEC61000-3-2	A class equipment	/	
	Voltage fluctuation and Flicker	IEC61000-3-3	P _{st} ≤1.0, P _{lt} ≤0.65, d _c ≤3%,d _{max} ≤4% the value of d(t) during a voltage change shall not exceed 3% for more than 200ms	/	
	Immunity to		Air discharge 15kV		
	Electrostatic Discharge	IEC61000-4-2	Contact discharge 8kV		
	Immunity to Radiated Electric Fields	IEC61000-4-3	20V/m	А	
	Immunity to Power Frequency Magnetic	IEC61000-4-8	100A/m	А	
EMS	Immunity to Electrical FastTransient	IEC61000-4-4	2KV	В	
	Immunity to surges	IEC61000-4-5	Differential mode: 2kV	В	
	ininianity to surges	12001000-4-5	Common mode : 4kV	Ь	
	Immunity to Continuous Conducted Interference	IEC61000-4-6	20Vrms	А	
	Immunity to Voltage Dips and short interruptions	IEC61000-4-11		В	380V _{AC} input

Criterion A: the output voltage should be in the regulation band during the test.

Criterion B: the power module is allowed to lose its function. Namely, it can shut off its output during the test.

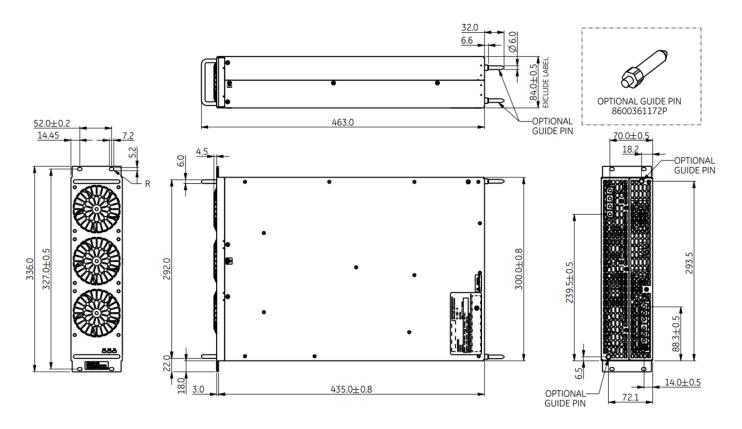
However, it must recover automatically after the condition is normal.

Criterion C: the power module is allowed to lose its function. Namely, it can shut off its output during the test.

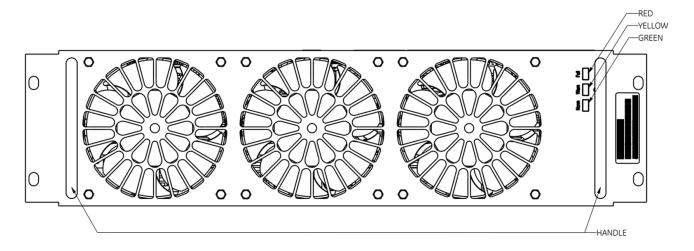
However, it must be able to recover after manpower's intervention.

Note 2: Conducted Emission and Radiated Emission are complied testing in system.

EV101H3NV1K Mechanical Specifications

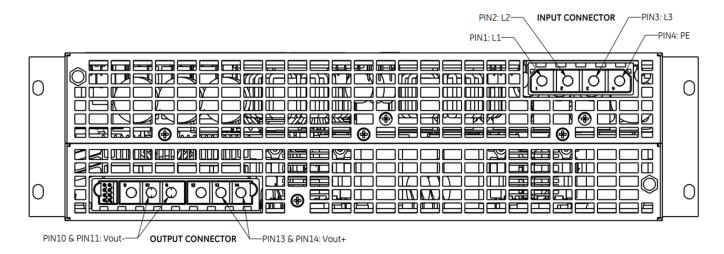


Mechanical features


Weight

Parameter	Min	Тур	Max	Units
Weight		14.3	15	kg

Mechanical outline



Front panel

EV101H3NV1K Connector

Connector Information

Connectors	Part No.	Vendor
AC Input Connector	DJL17-4TJW1-3	Shenzhen Tongmao Electronics Co., LTD
DC Output Connector	DJL17-14G12TJW1-2	Shenzhen Tongmao Electronics Co., LTD

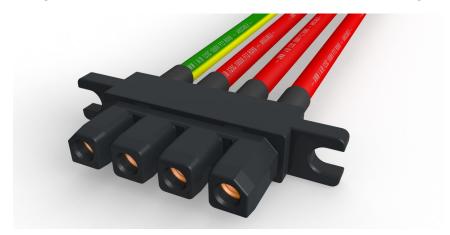
Pinout Information for EV101H3NV1K – With EPO/Standby

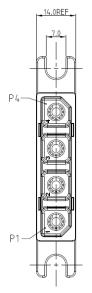
AC Input Connector		DC Output Connector		
PIN 1	Lì	PIN 1	CANH	
PIN 2	L2	PIN 2	CANL	
PIN 3	L3	PIN 3	EPO/Standby +	
PIN 4	PE	PIN 4	EPO/Standby -	
		PIN 5	Address_GND	
		PIN 7	Address1	
		PIN 8	Address2	
		PIN 10	Vout -	
		PIN 11	Vout -	
		PIN 13	Vout +	
		PIN 14	Vout +	

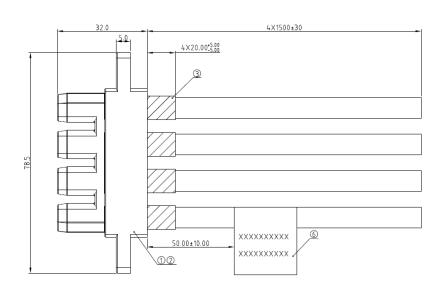
The EVI01H3NVIK supports EPO/Standby function (Emergency Power Off) using discrete pins.

The pins are normally high, provided by auxiliary voltage from the charger. When the circuit is opened, the rectifier shuts off within 20ms.

Refer Table EPO operating sequence for EPO electrical details.

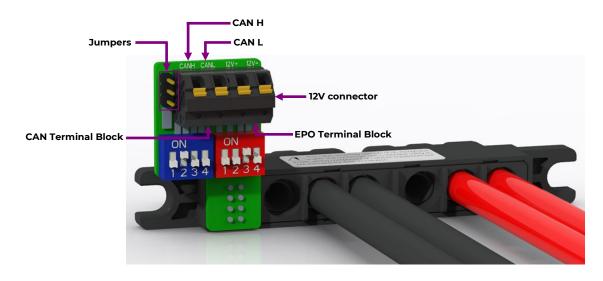

EPO Specification


Signal pins	3(+) & 4(-)
Input power consumption	<10mA, if only use EPO function
DC output	
Enable	By applying 10V - 25V
Disable	By removing 10V - 25V or ground Output Disabled <20ms
EPO Input Isolation	
Against AC & DC	Reinforced isolation
Against Enclosure	Basic isolation

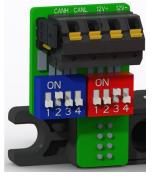

- EPO function is part of the same isolation group as the CAN interface.
- The EPO signal is reported through the alarm register.

AC input mating connector cable

The length of AC input mating connector cable is around 1500 millimetres. Refer below image.

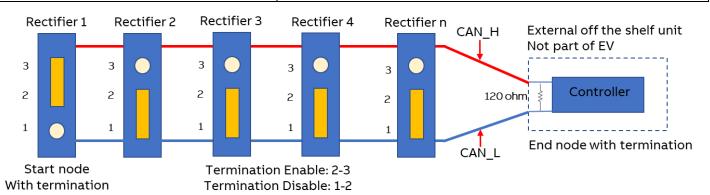


AC input mating connector cable



DC output mating connector cable

The length of DC output mating connector cable is around 1500 millimetres. Refer below image.

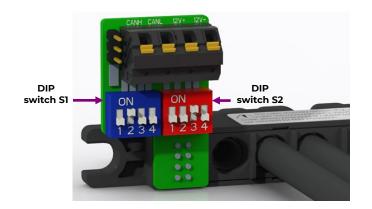

Jumper pins 1-2 Pass through

Jumper pins 2-3 120 Ohm

DC Output Cable embedded Can bus interface - back view

CAN Connection

Jumper Position	Function		
No jumper	The function same with jumper on 1-2 pins. This photo is for show the header and pin sequence.		
2–3 (far away from dip sw)	120 Ω resistor on		
1 – 2 (close to dip sw)	120 Ω resistor off		



Drawing code address on Address board

Hardware address = 5* (the "ON" digital position of S2 + the "ON" digital position of S1)

Example: S1 NO.2 is "ON", S2 NO.3 is "ON" Hardware address = 5*3+2 = 17

Note: If no any digital position is "ON", the default is zero.

Dial code comparison table

FORMULA used: 5*S2_X + S1_Y >(X=1..4; Y=1..4)

			S1				S2			
Position/HW address	S1 Value	S2 Value	_1	_2	_3	_4	_1	_2	_3	_4
1	1	0	ON	OFF						
2	2	0	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
3	3	0	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
4	4	0	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF
5	0	1	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF
6	1	1	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF
7	2	1	OFF	ON	OFF	OFF	ON	OFF	OFF	OFF
8	3	1	OFF	OFF	ON	OFF	ON	OFF	OFF	OFF
9	4	1	OFF	OFF	OFF	ON	ON	OFF	OFF	OFF
10	0	2	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF
11	1	2	ON	OFF	OFF	OFF	OFF	ON	OFF	OFF
12	2	2	OFF	ON	OFF	OFF	OFF	ON	OFF	OFF
13	3	2	OFF	OFF	ON	OFF	OFF	ON	OFF	OFF
14	4	2	OFF	OFF	OFF	ON	OFF	ON	OFF	OFF
15	0	3	OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF
16	1	3	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF
17	2	3	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF
18	3	3	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF
19	4	3	OFF	OFF	OFF	ON	OFF	OFF	ON	OFF
20	0	4	OFF	ON						
21	1	4	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON
22	2	4	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON
23	3	4	OFF	OFF	ON	OFF	OFF	OFF	OFF	ON
24	4	4	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON

^{1.} When setting the address, ensure that at most one dip swith of S1 or S2 is in the "ON" state, if more than one dip switch of S1 or S2 is in the "ON" state, hardware address calculation errors may occur.

^{2.} If all the dial code of S1 and S2 are "OFF", which indicates invalid address.

^{3.} The colors S1 and S2 dip switches are blue and black.

Ordering Code	Description	Input Nominal Voltage	Output Voltage Range	Output Current	Temperature Range
1600483514A	EV101H3NV1K 30kVA DC Fast Charger Rectifier	400V _{AC} /480V _{AC} , 3Ph, Delta	1000V _{DC}	30A	-20°C to 75°C

Accessories

Ordering Code	Description				
4600400617P	4 POLES AC INPUT CABLE FOR EV, 6AWG				
7000450144A	8S+4P DC CABLE FOR EV, 6AWG				
1600449585A	CABLE KIT EV100H3N1K/EV101H3N1K CABLE SETS, contains 1 AC cable and 1DC cable				
1600441222A	CANopen toolkit. Contains developer tools including a dongle for connection to a laptop and a URL for downloading the GUI, a user manual, and other tools.				

Change History (excludes grammar & clarifications)

Revision	Date	Description of the change
1.0	02-13-2025	Initial Release

OmniOn Power Inc.

601 Shiloh Rd. Plano, TX USA

omnionpower.com

We reserve the right to make technical changes or modify the contents of this document without prior notice. OmniOn Power™ does not accept any responsibility for errors or lack of information in this document and makes no warranty with respect to and assumes no liability as a result of any use of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of OmniOn PowerTM. This document does not convey license to any patent or any intellectual property right. Copyright© 2025 OmniOn Power Inc. All rights reserved.